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Abstract— This paper proposes a new visual control approach
based on sinusoidal inputs to be used on a nonholonomic robot.
We present several contributions: in our method, developed
considering a unicycle kinematic model, sinusoids are used
in such a way that the generated vehicle trajectories are
feasible, smooth and versatile. Our technique improves previous
sinusoidal-based control works in terms of efficiency and
flexibility. As further contributions, we present the analytical
expressions for the evolution of the robot’s state, and propose
a new state-feedback control law based on these expressions.
All the information used in the control scheme is obtained
from omnidirectional vision by means of the 1D trifocal tensor.
Stability analysis of the proposed approach is presented, and
its performance is illustrated through experiments.

I. INTRODUCTION

Autonomous navigation and control of mobile robots using

vision sensors is a widely researched topic [1]–[3]. Although

other sensors can be used for control or localization purposes

[4], vision is a highly regarded sensing modality due to its

relatively low cost and the rich information it provides. In

particular, significant interest has been put in recent years

in omnidirectional cameras [5] which, due to their wide

field of view, facilitate navigational tasks. In visual control

methods, a control loop using image data (image-based

approaches), 3D pose information (position-based methods)

or a combination of both (hybrid techniques) is employed to

drive the robot to the target location, which is defined by an

image previously acquired from it.

Part of the visual control methods available in the literature

do not consider the particular motion constraints of the

vehicle on which they are to be used. In general, it is

relevant to take into account the nonholonomic kinematic

constraints usually associated to wheeled mobile robots if

one aims to generate feasible motions for them [6], [7]. Due

to its great interest, the control of nonholonomic vehicles

has long focused the attention of researchers. A wide variety

of works have been presented in this area, addressing such

tasks as motion planning [8], pose stabilization [9]–[11], path

following [12], [13] or trajectory tracking [14].

In order to perform motion control of a nonholonomic

robot, using sinusoidal velocity inputs can be a good choice,

due to the characteristic smoothness of sinusoidal functions,

their well-known mathematical properties and their potential

to generate flexible and analyzable trajectories. The use of

sinusoidal control inputs was introduced in [8], where they
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were employed to steer the class of nonholonomic systems

that can be expressed in chained form (which applies to

many real systems). In [15] sinusoidal velocities at multiple

frequencies are used in a similar fashion, and the trajectories

generated by them are noted to be particularly suited for

parallel parking manoeuvres. [16] proposes the use of sinu-

soids for feedback control to asymptotically stabilize systems

in chained form. In [17] a modification of such sinusoidal

feedbacks which makes them homogeneous is shown to

provide faster convergence rates (exponential stability).

None of these works addresses the design of the sinusoidal

inputs themselves. As a consequence, the trajectories and

control performance obtained with these methodologies may

not be satisfactory. In contrast, the starting point of our

sinusoidal-input based control method is the design of the

linear and angular velocity waves, which are defined with

smoothness, flexibility, feasibility and safety considerations

in mind. The aforementioned control approaches were devel-

oped for general classes of systems; instead, we focus on the

particular nonholonomic constraints of a unicycle vehicle,

and obtain analytical expressions of the evolution of the

system through the integration of the sinusoidal velocities.

This work addresses the problem of visual control of

mobile robots, an open field of research which has stayed

very active in recent years. Some examples of related works

where vision sensors are employed for mobile robot control

tasks are [18] for structure and motion for navigation, [19]

for vision-based control, [20] for car platooning or [21]

for control with a visual memory. A particular task closely

related with the approach we propose in this paper is visual

homing, where a vehicle’s position is stabilized to a location

defined with an image. Different works have addressed the

solution to this problem using information from the angles

of image features [22], image distances [23] or frequency

components [24], performing image warping [25], or utiliz-

ing the scale of image features [26], their distances [27] or

their vertical displacement [28]. In [29], visual homing is

carried out considering car-like kinematic constraints.

In the method we propose, the estimation of the system

state is obtained from the visual information provided by

the images acquired with an omnidirectional camera. A

well-known way to improve the robustness of vision-based

computations to image feature matching errors is through

the use of the geometric models that relate multiple views

of a scene. These models can be computed linearly from

sets of feature matches between the different views [30]

and may be used to estimate 3D parameters for their use in
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control [3]. [31] is an early example of the use of the two-

view model expressed by the epipolar geometry for control

purposes. Nonholonomic visual control methods have been

proposed using this model [32] and the trifocal tensor [33],

[34], which encapsulates the geometric constraints between

three views [30] and provides improved robustness. [35]

introduces the use of the 2D trifocal tensor tensor to control a

6-DOF manipulator. When the camera motion is planar and

omnidirectional vision is employed, the best-suited multi-

view model available is the 1D trifocal tensor, introduced in

[36]. Within the field of mobile robot control, the 1D trifocal

tensor has been exploited by using its elements directly

in a control loop [37], or as a tool to extract geometric

parameters of interest [38]. The work [33], which presents

a control method for a nonholonomic mobile robot using

three-view geometry, has the following main differences with

our approach: we use the 1D tensor (which is simpler to

compute and requires fewer point matches than the 2D one)

and an omnidirectional camera without specific calibration,

while [33] employs the 2D tensor and a calibrated perspective

camera. Also, our method performs control to a goal location

by estimating the system’s state, and is characterized by

providing great knowledge of the trajectories, whereas the

other work performs the control task by tracking the desired

evolutions of the trifocal tensor elements, not relying on state

estimation and providing less knowledge about the actual

robot trajectories.

In the present work, the computation of the 1D trifocal

tensor between the current, initial and target views is used

to estimate the state of the robot, providing our method

with the robustness properties associated with this model.

The target image, taken previously at the desired location,

defines the goal of the control task. An important advantage

of our approach with respect to the related works in the

visual control field is given by the adopted motion strategy:

when compared to typical vision-based control methods, our

approach based on sinusoidal inputs generates particularly

smooth and versatile trajectories. Furthermore, in comparison

with previous works on 1D trifocal tensor-based control [37],

[38], our method has the benefit of providing greater control

on the path followed by the vehicle.

We can summarize the properties of our approach, in a

qualitative manner, as follows: it is more flexible and efficient

than related works in the field of nonholonomic motion

planning and control, and it provides increased smoothness,

trajectory control and robustness with respect to comparable

visual control methods. In addition, our technique is versatile

and can be easily adapted and extended to other tasks with

different requirements, such as static obstacle avoidance or

parking manoeuvres.

Figure 1 displays an overview of the control loop. The

stabilization of the nonholonomic vehicle is performed in two

sequential phases. The sinusoidal input-based control, which

aligns the vehicle with the target location, is followed by a

second step consisting in a straight-line trajectory to carry

out depth correction using the 1D trifocal tensor elements

directly.
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Fig. 1. Overview of the visual control loop. The sinusoidal input-based
control law (step 1) operates until a fixed time T/2, where T is the period
of the sinusoid. From that instant depth correction is performed using a 1D
trifocal tensor-based control law (step 2).

The contents of the paper are organized as follows: Sec-

tion II describes the model of the system to be controlled.

Section III discusses the first step of our control approach,

which is based on the sinusoidal inputs. The second step of

the control method is discussed in section IV. In section V

we describe how the state estimation is obtained from the

1D trifocal tensor. The stability of the control scheme is

analyzed in section VI. Section VII presents the results of

the experimental evaluation of the method. A discussion

of the method is presented in Section VIII and finally, the

conclusion of the paper is given in section IX.

II. SYSTEM MODEL

A nonholonomic robot moving on the ground plane con-

stitutes the dynamical system to be controlled. The state of

this system is defined by the robot’s localization, given by

x = (x, z, φ)T . The origin of the coordinate system is the

goal location, given by the localization at which the target

image was obtained, i.e. x3 = (0, 0, 0)T . The nonholonomic

differential kinematics of the vehicle expressed in state space

form as a function of the translation and rotation velocities

of the robot (v, ω) is as follows:
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Since the primary information we will extract from the

system through the 1D trifocal tensor is of angular nature, it

is also useful to express the system’s state and its kinematics

in polar coordinates (ρ, α, φ)T as illustrated in Fig. 2. The

lateral and depth coordinates are related to the polar ones

through x = −ρ sinψ and z = ρ cosψ, while the alignment

error is defined as: α = φ − ψ. The kinematics in polar

coordinates are:
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Fig. 2. Definition of the elements of our system and the geometric variables
employed. ’3’ identifies the goal view, which serves as the global coordinate
system. ’2’ is the robot’s current location, and ’1’ is the location of the
initial view. γ and β are angular sectors (≥ 0) and d is the distance between
the initial and target locations.
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III. SINUSOIDAL INPUT-BASED CONTROL SCHEME

Our approach for the first step of the control strategy

is based on defining the desired trajectories of the state

variables in a sinusoidal-varying velocity framework. The

velocities we propose follow a sinusoidal time variation

expressed by:

v = a sin(Ωt) (3)

ω = b sin(2Ωt). (4)

We assume throughout that the angular frequency of the

sinusoid (Ω) is set to a constant value. This is a design

parameter whose value will be determined by the time

interval in which we want the first step of the control to

be carried out. This interval is equal to one half-period of

the sinusoid, i.e. T/2 = π/Ω. The parameters a and b are

real values that set the amplitudes of the sinusoidal velocity

waves. We first consider the robot’s state at t = 0 to be

(x0, z0, 0)
T . If the initial orientation of the robot is nonzero,

we will compute the starting time (ts 6= 0) of the sinusoidal

velocity waves, which will now run from ts to T/2. This

will be described in section III-B.

The velocities defined in (3) and (4) have been designed in

such a way that the rotational velocity is zero at the points

where the linear velocity is either maximum (in absolute

value) or zero. Besides, the greatest rotational speeds are

associated in our method to intermediate linear velocity

values. This results in a behavior which is convenient for

a vehicle with nonholonomic motion constraints. The gen-

erated motion fulfills criteria of smoothness, safety, and

feasibility, and is appropriate for this kind of vehicles.

A. Evolution of the system

In this section, we obtain the analytical expressions for

the evolutions of the state variables in a motion planning

scenario under the sinusoidal-varying velocity commands (3)

and (4). By integrating these sinusoidal inputs over time,

we can derive the equations for the evolution of the three

state variables. We will first obtain the time variation of the

orientation component:

φ(t) = φ0 +

∫ t

0

φ̇dτ =

∫ t

0

ωdτ

=

∫ t

0

b sin(2Ωτ)dτ =
b

2Ω
(1 − cos 2Ωt), (5)

considering φ0 = 0. Once we know how φ evolves with

time, we can substitute this result in (1) to obtain the time

variations for the two other state variables. We will first

determine the evolution of x(t). For this purpose we will

use the Taylor series representation of sinφ:

ẋ(t) = −v sinφ = −a sin(Ωt) ·
∞∑

n=0

(−1)n

(2n+ 1)!
φ2n+1

= −a sin(Ωt)
∞∑

n=0

(−1)n

(2n+ 1)!

(
b

2Ω

)2n+1

(1− cos 2Ωt)2n+1

= −a
∞∑

n=0

(−1)n

(2n+ 1)!

(
b

Ω

)2n+1

sin4n+3(Ωt), (6)

where the identity: 1 − cos 2Ωt = 2 sin2 Ωt has been used.

We can now obtain the evolution of the state variable x in

the time interval 0 ≤ t ≤ T/2 through integration:

x(t) = x0 +

∫ t

0

ẋ(τ)dτ

= x0 −
∫ t

0

a

∞∑

n=0

(−1)n

(2n+ 1)!

(
b

Ω

)2n+1

sin4n+3(Ωτ)dτ.

(7)

The integral of the sine function in (7) can be expressed as:

∫ t

0

sin4n+3(Ωτ)dτ =

[
−cosΩt

Ω
· 2F1

(
1/2,−2n− 1; 3/2; cos2 Ωt

)]t

0

, (8)

where 2F1 is the Gaussian hypergeometric function:

2F1(p, q; r; s) =

∞∑

k=0

(p)k(q)k
(r)k

sk

k!
,

with (p)k = p(p+1)(p+2) · · · (p+ k− 1) and (p)0 = 1. It

can be easily seen that when q is a negative integer (which

is indeed the case for us, since q = −2n− 1) the series has

only |q + 1| nonzero terms, i.e. k = 0, ..., q. We finally get

to the following expression for x(t):
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Fig. 3. Left: Example robot trajectories obtained with the sinusoidal input-based control law. This law aligns the vehicle with the target pose (0, 0, 0◦)T .
In a second control step, the depth error is corrected following a straight-line path. Center: Four trajectories generated by extending the proposed method
in order for the motions to span several half-periods of the sinusoid. Right: Control paths from starting position (−4,−1,−10◦)T with φm = 45◦, 60◦,
90◦ and 120◦ (top to bottom curves).

x(t) = x0 +

[
a cos(Ωt)

Ω
· Γ(b, t, 1)

]t

0

, (9)

where we define:

Γ(b, t,m) =
∞∑

n=0

(−1)n

(2n+m)!

(
b

Ω

)2n+m

· 2F1

(
1/2,−2n−m; 3/2; cos2 Ωt

)
. (10)

Thus, x can be exactly determined at any time through

the sums of series of infinite terms. Note, however, that

the index of these sums, n, is the index of the Taylor

series representation of sinφ. The values of φ will be, at

most, in the range (−π, π] (usually, the actual range will be

considerably smaller); therefore, taking only a small number

of terms in the sums will suffice to ensure that an accurate

solution is obtained. Indeed, it can be shown that the error in

the computation of x(t) becomes negligible by taking only

three terms (n = 0, 1, 2) in the sum of (10).

The time evolution of the state variable z can be worked

out in an analogous way, through the integration of the

corresponding expression in (1). This time we use the Taylor

series expansion of cosφ.

ż(t) = v cosφ = a sin(Ωt) ·
∞∑

n=0

(−1)n

(2n)!
φ2n

= a sin(Ωt) ·
∞∑

n=0

(−1)n

(2n)!

(
b

2Ω

)2n

(1 − cos 2Ωt)2n

= a
∞∑

n=0

(−1)n

(2n)!

(
b

Ω

)2n

sin4n+1(Ωt), (11)

and then:

z(t) = z0 +

∫ t

0

żdτ

= z0 +

∫ t

0

a
∞∑

n=0

(−1)n

(2n)!

(
b

Ω

)2n

sin4n+1(Ωτ)dτ. (12)

The integral of this sine function raised to a power depend-

ing linearly on n can be expressed through a hypergeometric

function:
∫ t

0

sin4n+1(Ωτ)dτ =

[
−cosΩt

Ω
· 2F1

(
1/2,−2n; 3/2; cos2 Ωt

)]t

0

, (13)

and finally, z(t) has the following expression:

z(t) = z0 −
[
a cos(Ωt)

Ω
· Γ(b, t, 0)

]t

0

, (14)

with Γ as defined in (10).

Thus, we have obtained the analytical expressions for the

trajectories of the three state variables. Next, we will work

out the values of a and b required for the state variables x
and φ to converge to zero at t = T/2.

The stabilization of a nonholonomic system to a given

configuration is known to be a difficult problem. The ve-

hicle considered in this work (a wheeled unicycle mobile

robot modeled in a Cartesian space representation) cannot

be stabilized through smooth state-feedback control [39].

Considering the particular sinusoidal inputs we have chosen,

it turns out that with the two degrees of freedom we have in

the control loop (namely, the values a and b of the amplitudes

of the sinusoidal velocities) we will only be able to control

two of the robot’s state variables simultaneously. Thus, we

can make x and φ go to zero in t = T/2, but not z. Therefore,

this latter variable is not controlled in the first step of our

control scheme. The kinematics of the reduced system can

then be expressed as follows:

{
ẋ = −v sinφ
φ̇ = ω.

(15)

Thus, z can have any arbitrary final value, and this degree

of freedom allows us to choose one among the infinite

possible trajectories between the robot’s initial and final

configurations. A convenient way to do so is by setting

the maximum absolute value of the orientation component,



φm > 0, that the robot will achieve during its motion. This

choice can give us a good sense of what the trajectory will

be like (see the right part of Fig. 3). Once we have selected

a value of φm, the value of b can be readily obtained by

using (5) and choosing its sign correctly, as expressed by

the following equation:

b = λ · Ω · φm, (16)

where λ = 1 or λ = −1 depending on the initial

configuration of the robot. Note that λ is used to set the

appropriate sign of b for the desired motion. The way in

which this parameter is selected will be detailed later in the

paper. The functional variation of ω and the assumption that

φ0 = 0 ensure that the final orientation will be φ(T/2) = 0
regardless of the value of b. For a given b, i.e. for a given

rotational velocity variation, we can see that there is only one

value of a that will steer x from its initial value x0 to 0 at

the end of the motion interval. We can determine this value

by enforcing the constraint: x(t = T/2) = 0 in equation (9),

which yields:

a =
x0 · Ω

2 · Γ(b, 0, 1) . (17)

B. Feedback estimation of control parameters

The previous development assumes that no perturbations

are present. Since in practice the system will be subjected

to disturbances (e.g. measurement noise, motion drift and

model errors), we propose to re-estimate the values of a and

b online. During operation, at every given time t the state of

the robot is estimated, and the amplitudes of the sinusoidal

inputs are computed by enforcing the constraints that both x
and φ must become 0 on t = T/2. For this purpose we use

the previously obtained equations (5) and (9), which lead to

the following results:

b(t) =
φ(t) · Ω
sin2(Ωt)

(18)

a(t) =
x(t) · Ω

cos(Ωt) · Γ(b(t), t, 1) + Γ(b(t), 0, 1)
. (19)

Expressions (18) and (19) are valid for 0 < t < T/2.

The values of a and b at t = 0 can be obtained from the

expressions given in section III-A for the two parameters. In

addition, both a and b must be set to 0 at t = T/2. This

way, the singularities in the expressions (18) and (19) are

avoided. Still, we need to ensure that the velocity values

will remain within reasonable limits; therefore, we will have

to bound them by setting maximum values which can be a

function of the initial amplitudes, i.e. amax = Ka · a(0) and

bmax = Kb · b(0), where Ka > 1, Kb > 1.

Note that, as already mentioned in section III, our control

method can be used for any arbitrary initial orientation of

the robot. For a given starting value φs 6= 0, we set λ =
sign(φs) in (16) in order to define the waveform properly.

In the case φs = 0, the sign of λ can be chosen arbitrarily.

The starting time ts of the input sinusoids can be obtained

as:

ts =
T

2π
arcsin

√
φs
λφm

, (20)

where the maximum absolute value of the orientation, φm,

must be selected so that φm > |φs| to ensure the computed

ts is in the correct range, 0 < ts < T/2. The sinusoidal

inputs will now run from ts to T/2 to leave the robot aligned

with the target along the z axis. Since there are two possible

solutions of (20) within the interval (0, T/2), we choose

the value of ts that generates a more suitable trajectory (for

example, the shorter one) considering the initial distance to

the target axis (xs) and the duration of the motion (T/2−ts).
Note that our method can handle any starting value φs, even

if the robot is initially reversed with respect to the desired

final pose. Some example trajectories obtained using the

sinusoidal input-based control law are shown in Fig. 3. The

flexibility of the method is illustrated in the right part of the

figure, where varying choices of the design parameter φm
result in control paths of different characteristics. In addition,

although the control method we present runs for one half-

period of the sinusoidal wave, it is straightforward to extend

it to generate trajectories spanning several half-periods. Just

for illustration purposes, examples of this are shown in the

center plot of Fig. 3.

IV. 1D TRIFOCAL TENSOR-BASED DEPTH CORRECTION

The first step of our control scheme corrects both the

lateral position and the orientation of the robot. Thus, at

the end of this stage the robot’s state is (0, z2, 0)
T . The

correction of the depth coordinate is performed in the sec-

ond step of the control employing the 1D trifocal tensor

elements directly. In this section, subindexes are used to

identify the cameras, being (x2, z2, φ2)
T the current location

and (x1, z1, φ1)
T the location of the fixed reference view.

Without loss of generality, (x3, z3, φ3)
T = (0, 0, 0)T is the

location of the target view as defined in Fig. 2. Since in this

particular situation the 1D trifocal tensor elements provide

all the information necessary for the control task, we use

them directly in the feedback loop, without estimating the

state of the robot explicitly. In particular, the trifocal tensor

elements when the state is (0, z2, 0)
T are as follows:

T1 =

[
−z2 sinφ1 − tz1 − z2 cosφ1

tz1 0

]
,

T2 =

[
z2 cosφ1 tx1 + z2 sinφ1

−tx1 0

]
, (21)

where the tensor has been broken down in matrices T1

(representing elements T1jk) and T2 (representing elements

T2jk); and tx1 = −x1 cosφ1 − z1 sinφ1, tz1 = x1 sinφ1 −
z1 cosφ1 express location relative to the first camera’s local

coordinate system [37].

From the information provided by the 1D trifocal tensor

entries, we can obtain the distance to the target location, as



follows:
√
T111

2 + T211
2 =

√
z22sinφ1

2 + z22cosφ1
2 = |z2|.

(22)

In order for the robot to move towards the target, the

sign of the linear velocity v must be opposite to the sign

of z2, which can be obtained using the angular coordinate

ψ: sign(v) = −sign(cosψ2). We also need to take into

account the fact that the 1D trifocal tensor computed from

point correspondences is obtained up to scale. Therefore,

if its elements are to be used for control tasks, they need

to be normalized to a fixed scale. We achieve this by

using the following normalization factor:
√
T121

2 + T221
2 =√

tz1
2 + tx1

2 =
√
x12 + z12. The linear velocity of the

second step of our control, based on the normalized 1D

trifocal tensor elements, is then as follows:

v = −sign(cosψ2) · kv

√
T111

2 + T211
2

T121
2 + T221

2
· fr(t), (23)

where kv is a positive control gain. The motivation of

the term fr(t) is to avoid the velocity jump at the start of

the second control step due to the resultant linear velocity

evolution of the robot proportional to the distance to the

target, which is not desirable. For this reason, we use a

weight function to make the linear velocity vary smoothly. In

keeping with the sinusoidal-input framework that is the basis

of our paper, we use for this purpose a sinusoidal function

fr(t) defined as follows:

fr(t) =

{
sin(πt/(2tr)) , t ≤ tr

1 , t > tr.
(24)

Notice that fr(t) is simply a wave that starts as a sine

running for a quarter of a period (i.e. a function rising

smoothly from an initial value of zero to a value of one

at t = tr) and that maintains its value (i.e. stays at one)

thereafter. Thus, this weighting function only operates at the

beginning of the second control step. Although the needed

motion is straight along the z axis, in order to compensate

for noise or drift, we perform orientation control using the

following angular velocity:

w = −kw · φ2, (25)

where kw is a positive control gain.

V. STATE ESTIMATION THROUGH THE 1D TRIFOCAL

TENSOR

In order to perform the feedback control defined in sec-

tion III, we need to estimate the state of the robot along its

motion. We will only use omnidirectional visual information

for this purpose. The reader is referred to our previous

work [38] where we provide a thorough description of the

procedure through which the relative angles between the

locations of three views can be extracted from the 1D trifocal

tensor. The tensor is computed linearly from points matched

across the three views, which in our case are the target view,

the current view and a reference view (which can be the

initial image). Once we know the angles between the views,

it is straightforward to work out the angular coordinates α
and φ of the robot’s state representation in polar form.

However, since the trifocal tensor is defined up to an

unknown scale, distance estimations cannot be directly ex-

tracted from it. In order to compute distance parameters, we

will initially need to use the derivatives of the known angles.

These are rather noisy estimates; in order to avoid using them

during control, we will take advantage of the fact that we

have three views forming a triangle and a fixed reference

distance between two of them.

We define d as the fixed distance between the initial (or

reference, in a more general sense) position and the target

position (see Fig. 2). d is related to the state variable ρ and

the angular sectors γ and β through the law of sines:

ρ = d · sin(γ)/ sin(β). (26)

This expression can be used if β 6= 0, which will be

true as long as the robot does not cross the line joining the

reference and goal locations during its motion. Before the

control task is started, the robot performs an initial motion

whose objective is to compute d. This is done by using (26)

and (2), leading to the following expression:

d =
sinβ

sin γ
· ψ̇

v sinα
. (27)

We can estimate the derivative of ψ as:
̂̇
ψ = (ψ(t +

∆t) − ψ(t))/∆t. The initial motion executed prior to the

control task must be such that the robot does not cross the

line joining the reference and goal positions, thus ensuring

β 6= 0 and γ 6= 0. In addition, the robot must not move in

the direction towards the target, in order to ensure ψ̇ 6= 0 and

sinα 6= 0. It is straightforward to generate a motion fulfilling

these conditions, since from the computation of the trifocal

tensor, we know the angles between the three locations at all

times.

During the initial motion we can obtain a number of

estimates of d using (27) and compute their average, until

we achieve a sufficiently stable value. Then, during the

control phase, ρ is computed using (26), and x, the position

variable we use in the feedback control loop, is obtained as

x = −ρ sinψ.

VI. STABILITY ANALYSIS

The stability of the system under the proposed control

method is analyzed in the following.

Proposition 1: The sinusoidal input-based control law (3),

(4) with (18) and (19) achieves global asymptotic stabiliza-

tion of the system (15).

Proof:

We will use Lyapunov analysis [40] to assess the stability

properties of the system when the sinusoidal input-based

control law is used.

We define the following positive definite, radially un-

bounded Lyapunov-candidate function: V = 1

2
x
T
Px, where
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Fig. 4. Three sample robot trajectories for the sinusoidal input-based control, from starting locations (4,−2, 5◦)T , (−3, 2, 25◦)T and (−2,−3,−45◦)T .
The evolutions of the state variables x (left), z (center) and φ (right) are displayed in the top row. The second row shows the robot paths (left) for each
trajectory, the linear velocity (center) and the angular velocity (right).

x = (x, φ)T is the reduced state vector of the system and P

is the following positive definite matrix:

P =

[
Px 0
0 1

]
, (28)

with Px > 0. The derivative of V is as follows: V̇ =
1

2
(ẋT

Px+x
T
Pẋ) = Pxxẋ+φφ̇. Under the feedback control

law of the first step of our method, based on input sinusoids

of amplitudes computed using (18) and (19), we have:

V̇ = −Px · x2 · Ω · F (φ, t) + 2φ2Ωcot(Ωt), (29)

where:

F (φ, t) =
sinΩt · sinφ

cos(Ωt) · Γ(b(t), t, 1) + Γ(b(t), 0, 1)
. (30)

The asymptotic stability condition, V̇ < 0, is assured when:

Px >
2φ2 cot(Ωt)

x2F (φ, t)
. (31)

If no perturbations are present, the values of a(t) and b(t)
obtained using (18) and (19) will remain constant throughout

the operation period. Taking this into account, we have that

φ varies according to (5), and x follows the evolution defined

in (9), which is equivalent to:

x(t) =
x0

2Γ(b, 0, 1)
· (Γ(b, 0, 1) + cosΩt · Γ(b, t, 1)). (32)

Substitution of F (φ, t), x and φ in (31) finally yields the

following expression:

Px >
8b2Γ2(b, 0, 1) sin2 Ωt cosΩt

x20Ω
2 sin( b

Ω
sin2 Ωt)(Γ(b, 0, 1) + cosΩt · Γ(b, t, 1))

.

(33)

It can be demonstrated that the right part of (33) has a global

maximum in the time interval 0 < t < T/2 when t→ 0. In

particular, we have that:

lim
t→0

8b2Γ2(b, 0, 1) sin2 Ωt cosΩt

x20Ω
2 sin( b

Ω
sin2 Ωt)(Γ(b, 0, 1) + cosΩt · Γ(b, t, 1))

= lim
t→0

sin2 Ωt

sin( b
Ω
sin2 Ωt)

lim
t→0

8b2Γ2(b, 0, 1)/x20Ω
2

Γ(b, 0, 1) + cosΩt · Γ(b, t, 1)

=
4bΓ(b, 0, 1)

x20Ω
.

(34)

Therefore, there exists an upper bound to the right part of

(33), and Px can be defined as required. Thus, the system

under the proposed sinusoidal control law is asymptotically

stable.

Proposition 2: The 1D trifocal tensor-based control law

(23) achieves global stabilization of the system, while the

rotational velocity (25) achieves lateral drift compensation

assuming that proposition 1 is accomplished.

Proof:

In order to analyze the stability of the second step of our

method, we define the following positive definite, radially

unbounded Lyapunov-candidate function: V = 1

2
x
T
Px,



where x = (z, φ)T is the reduced state vector of the system

and:

P =

[
1 0
0 1

]
. (35)

The derivative of V is as follows:

V̇ = zv cosφ+ φw

= kvz
−z√

x12 + z12
fr(t) cosφ− kwφ

2. (36)

Note that the angular value φ is maintained at zero with

finite time convergence by the control action (25), keeping

the alignment toward the goal. Under the assumption that

proposition 1 is verified, it is straightforward to see that

the two terms of equation (36) are negative (since φ has

small values and therefore cosφ is positive, and fr(t) is also

positive). Consequently, the system under the control law of

the second step is asymptotically stable.

VII. EXPERIMENTAL RESULTS

Several simulations and experiments with a real robot

have been carried out to illustrate the performance of our

approach.

A. Simulations

Next, we present some simulation results for our pro-

posed visual control method. From the points projected and

matched between three virtual cameras, the trifocal tensor

is computed and the relative angles between the views are

estimated. The state variables of the system are subsequently

obtained from this information and used in the feedback

control. Figure 4 displays three sample trajectories, along

with the velocities used. The maximum absolute value of

the orientation (φm) was set to 60◦. Note that the generated

trajectories of the control are remarkably smooth. The robot

is left aligned with the target at the end of this phase, while

in the second control stage the depth is corrected following

a straight-line path.

The effects of adding Gaussian noise to the angles of the

projection of points in each view are illustrated in Fig. 5.

The final position and orientation errors in the presence of

noise of both steps of the control method are shown. The

first step appears to be more sensitive to noise. Still, in both

cases the final errors have small values.

Simulations with motion drift are illustrated in Fig. 6. The

added drift is proportional to the linear and angular velocities

of the robot. It can be seen that the control method is capable

of compensating the drift so that the system reaches the

desired state at the end of the control period. In order to

illustrate this effect, only the sinusoidal part of the control

(i.e. the first step) is shown. Note that the magnitude of

the added drift is considerably high, so as to illustrate the

potential of the approach to overcome it.

In order to evaluate the characteristics of our approach, we

provide next a comparison with previous control methods us-

ing sinusoids. We illustrate this discussion with a simulation
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Fig. 5. Results from simulations with added Gaussian noise. Solid lines
correspond to the first step of the control; dashed lines correspond to the
second. The average position (left) and orientation (right) errors at the end
of each step are displayed.
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Fig. 6. Simulation results with motion drift in the sinusoidal input-based
part of the control, from the initial location (−5,−4,−5◦)T . A driftless
simulation is shown in a thick solid line. The results obtained adding +10%
and -10% drift to both the linear and angular velocities of the robot are
displayed with a dashed line and a thin solid line, respectively.

example, displayed in Fig. 7. The method by Murray et al.

[8] employs multiple steps, and in its sinusoidal-motion part

generates a path that looks similar to ours. However, the

maximum rotations in absolute value occur at points where

the linear velocity is zero. This is not a desirable behavior

from the viewpoint of feasibility, smoothness and safety. In

contrast, our method generates the rotations of maximum

magnitude at intermediate linear velocities. The method due

to Tilbury et al. [15] performs the control in one single step.

Its resulting trajectories are hard to predict, since the specific

values of the parameters can change the input waveforms

and required manoeuvres considerably. As a consequence,

the motion can be unsatisfactory for a nonholonomic vehicle

and inefficient. Lastly, the method proposed by Teel et al.

[16] is a feedback control approach which achieves asymp-

totic convergence to the goal configuration. The trajectories

generated by this approach are not very efficient, and a

high number of manoeuvres are required. Its convergence

is slow, although an alternative method by M’Closkey et al.

[17] generates trajectories of a similar type, but achieving

exponential convergence.
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Fig. 7. Comparison of sinusoidal-input based control methods. From left to right, the four methods are: the approach presented in this paper, the method
by Murray et al. [8], the method by Tilbury et al. [15], and the method due to Teel et al. [16]. The top row shows the control paths from starting location
(−1,−0.5,−20◦)T for the four approaches. The bottom row displays the velocities associated to the paths on top.

Fig. 8. Mobile robot and omnidirectional camera used in the experiments.

Contrary to our method, the velocities applied on the vehi-

cle in the three other approaches are not actually sinusoids,

due to their use of a chained form system representation.

Still, the generated inputs are usually very close to sinusoidal

functions. The other methods cannot be configured to gener-

ate different trajectories with desired characteristics, which is

a feature of our approach. In addition, our technique requires

fewer manoeuvres (only one) than the other methods in the

comparison. Overall, we believe that our approach has the

advantages of providing a greater knowledge of the trajectory

and a motion strategy that is flexible and particularly suited

for nonholonomic robots.

B. Experiments on a real robot

We tested our control approach on a mobile robotic

platform from Robosoft, shown in Fig. 8. This four-wheeled

robot is equipped with various vision, laser and GPS sensors,

and also features a manipulator arm. Its maximum linear

speed is 2.5 m/s, and its maximum steering angle is 0.4

radians. The front and rear wheels of this robot can be steered

independently, which allows different steering modes. For

our experiments, we used it as a standard car-like vehicle

with rear-wheel driving. The vision system we employed

was an omnidirectional camera (shown in Fig. 8) mounted

on top of the robot. It consists of a Point Grey camera and

a Neovision H3S mirror. The size of the acquired images

was 1024 × 768. An external laptop computer on board was

used to capture the images at a constant rate (7.5 frames per

second) and issue the velocity commands to the robot. The

experiments were performed outdoors, next to a parking lot

in our university campus.

In order to test the method with real data, we generated

several trajectories and computed their associated sinusoidal

velocities according to our control approach. At the end

of each of these trajectories, we planned a straight line

motion that would correspond to the second step of our

method. Since our approach was developed for a unicycle

robot, we transformed our angular velocity commands to

the equivalent steering angle commands for a car-like robot.

This conversion did not cause any issues, due to our control

method’s properties of smoothness, feasibility and flexibility.

We describe next the results from one of these trajectories.

The sinusoidal part of it lasted 30 seconds, while the straight-

line motion lasted approximately 10 seconds. Figure 10

shows a sequence of images acquired in this trajectory

and pictures of the robot at the instants when the images

were captured, in order to illustrate its motion. Further

illustration of the trajectory followed by the robot during

the control execution and the captured image sequence can

be found in the provided video attachment. We used the

SIFT keypoint extractor [41] to find matches between sets

of three images: the current image along the trajectory, the

goal image, and a reference image (e.g. the initial one).

From every set of three view correspondences, we computed

the 1D trifocal tensor using the RANSAC robust estimation

algorithm. This procedure filters out wrong feature matches,



Fig. 9. Example of a trio of images with their putative SIFT correspon-
dences joined by lines (left). Feature matches remaining after the robust
computation of the 1D trifocal tensor (right).

thereby enhancing the robustness of the control performance.

Figure 9 shows an example of the outlier rejection achieved

in this experiment through the use of the 1D trifocal tensor

model.

We then used the 1D trifocal tensor to compute the state

of the robot, following the method explained in section V.

Figure 11 shows the estimated x − z path superimposed on

the robot’s odometry. Wrong estimations occurring at some

iterations (due to the lack of a sufficient amount of correct

three-view matches) were robustly detected and discarded.

This was achieved by imposing geometric consistency con-

straints on the angles obtained in each iteration between the

three views (i.e. by checking that the three views form a

triangle). We refer to our previous work [38] for more details

on how this is carried out. This procedure, together with the

rejection of wrong feature matches achieved by using the

trifocal tensor model, makes it possible to obtain robust state

estimations. As can be seen, the results of the computation of

the position follow closely the trajectory estimated through

the odometry.

The computations of the control inputs associated to our

approach for both parts of the trajectory are also illustrated

in Fig. 11. Again, wrong estimations along the complete path

were automatically detected and rejected. For the sinusoidal-

based part of the motion, we computed the associated signals

at every time instant using the feedback estimation of the

control parameters described in section III-B. The variations

of the linear velocity were smoothed out in the final part

of the sinusoidal control step through a weighted average

filter. We used a coarse initial estimation (which is refined

along the motion) of the distance d defined in section V,

for simplicity. As can be seen, the velocities are close to the

theoretically expected waveforms.

For the second part of the motion, i.e. the straight-line

path, we computed the controls associated to our method

directly from the elements of the 1D trifocal tensor, as

described in section IV. The angular velocity would ideally

be expected to stay at zero and, since the robot moved at

constant speed in this segment and the image acquisition rate

was also constant, the translational velocity v would ideally

be expected to decay linearly. The last sections of the v and ω
plots in Fig. 11 show that the results of the computations for

the second part of the control method were correct. Notice

that, for simplicity reasons, we did not employ the sinusoidal

weight function of section IV in these computations, since

the vehicle was not subjected to a velocity jump of relevant

magnitude at the beginning of the second control step.

Figure 12 shows the representation of the evolution of the

absolute control error in this experiment for each of the three

state variables, in order to illustrate the performance of the

control method and its convergence. It also displays the path

actually followed by the vehicle, as measured by the robot’s

odometry, along with the ground truth given by the desired

path and final location. The final absolute pose errors of the

experiment were: 0.14 m. in x (2.3 % error), 0.26 m. in z (2

% error) and 2.4 deg. in φ (4.7 % error). Thus, the accuracy

of the control method in this experiment was satisfactory, as

the errors were maintained in relatively small values.

VIII. DISCUSSION

In this section we discuss a number of practical aspects

related to the proposed control method, as well as some of

its properties and possible applications.

A. Practical considerations

The proposed control approach can be readily used with

any sensor that provides bearing measurements (e.g. a laser

scanner, a conventional camera, or an omnidirectional one).

Employing an omnidirectional vision sensor provides several

benefits: thanks to their wide field of view, these sensors

provide a high amount of visual information which, in

addition, is very precise in the angular coordinate. Having the

complete view surrounding the vehicle allows our technique

to be more robust and flexible (in terms of the admissible

paths and starting poses) than it would be if a conventional

camera was used.

Although our control method was derived considering the

unicycle kinematic model, we believe that it can be easily

extended to more general classes of nonholonomic vehicles,

due to the fact that the motions are designed to avoid sharp

changes. This is illustrated by the conversion from a unicycle

to a car-like kinematic model carried out in the experiment

with the real robot. This transformation was done directly,

computing the value of the steering angle (s) for the rear-

wheel driving car-like vehicle as: s = arctan(ω ·L/v), where

ω is the angular velocity, v is the linear velocity and L is

the distance between the front and rear wheels of the vehicle.

The two representations are equivalent for a car-like vehicle



Fig. 10. Sequence of images acquired by the robot in the trajectory used in the experiments. The top row shows the images, the bottom row shows the
location of the robot when the corresponding image was captured.
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Fig. 11. Results from the experiment with the real robot. Estimation of the position (marked with triangles) along the trajectory superimposed on the
odometry, which is shown in a solid line (left). Computed linear velocity (center) and angular velocity (right).
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Fig. 12. Results from the experiment with the real robot. From left to right: representation of the robot’s trajectory measured by the odometry (solid line)
and the desired trajectory (dashed line); evolution of the absolute control error in the state variables x, z and φ.

[9], [29]. The fact that the velocities of our approach vary

smoothly, means that the corresponding steering angle s also

varies smoothly, which facilitates the method’s successful

implementation on the real car-like robot.

As can be seen in the omnidirectional images captured

in the experiment with the real robot, the camera was

not situated in the geometrical center of the vehicle. This

practical issue has an effect on the trajectories performed by

the robot, which turn out slightly different from the theo-

retical ones. Still, the convergence behavior of the control

is not affected. It can be shown that, as long as the camera

center is situated in the longitudinal axis of the vehicle, the

equilibrium conditions of both the first and second steps

of the control are achieved equivalently either considering

a camera-centered frame or a vehicle-centered frame. We

implemented our control method in the experiment with the

real robot assuming the camera was approximately in the

longitudinal axis of the vehicle. The experimental results

confirm that the error associated to this assumption was

insignificant in practice.

As is common practice in control, we provide a proof

of the stability of the system when no perturbations are

present (section VI), assuming that in practice these unknown

disturbances would be bounded and within moderate limits.

The behavior of the system with non-ideal conditions is

illustrated in the simulations presented in section VII-A.

They show that our method can be robust with respect

to measurement noise and motion drift. In addition, the

experiment on the real robot in section VII-B illustrates the

feasibility of the control approach in a real scenario.

In the second step of our method (the depth correction

phase) we assume that the orientation control corrects the



angular error with finite-time convergence, as stated in the

proof of proposition 2. Assuming as well that proposition 1

is accomplished (i.e. there is no lateral error at the start of

the second step) and given that the orientation is maintained

at zero with our controller, the lateral error will also stay at

zero. In a practical situation, this means that the magnitude

of the lateral drift generated by our method is expected to

be small, bounded and not relevant.

B. Method properties and possible uses

By looking at the characteristics of its velocity inputs and

of the trajectories it generates, we can draw some qualitative

conclusions regarding the properties of our control approach.

In general, it is clear that avoiding sharp changes in the

motion of a vehicle is a desirable property. Sinusoidal waves

are very often found in nature, and they are characterized

by their avoidance of sudden changes. When the velocity

commands passed to a mobile robot are pure sinusoids, it is

ensured that the transitions will not be sharp. This is the rea-

son why we chose to use sinusoidal inputs. Furthermore, the

coupled evolution of the linear and angular velocities is also

designed to generate a smooth vehicle motion. Our method

provides great knowledge and control on the trajectory. In

addition, it is flexible, since motions of different shapes and

curvatures are possible by selecting the parameters of the

input signals appropriately. Thus, it can be designed to fit

different criteria (e.g. minimize the length of the path or the

required maximum rotation) depending on the situation.

In addition, based on the shape of the trajectories gen-

erated by our approach, we claim that it is well suited for

such tasks as obstacle avoidance and parking manoeuvres.

The robot paths are clearly reminiscent of a typical parking

manoeuvre, and the combination of a curved path in the first

control step and a straight one in the second is suitable for

the task of reaching a goal while avoiding an obstacle placed

between the initial and target locations. In addition, the

knowledge of the trajectories and the flexibility provided by

our method make it possible to design a trajectory adapted to

the particular conditions of the obstacle avoidance or parking

scenario. If the trajectory has to be modified over time, it is

indeed possible to reset the control execution and start a new,

replanned trajectory at any time, since our method can work

for any starting configuration, as discussed in section III.

Our technique could be readily used to avoid static obstacles.

However, if general dynamic obstacles were considered, an

additional obstacle avoidance method would have to be used

along with our control approach.

IX. CONCLUSION

We have proposed a sinusoidal input-based method to

perform visual control of a mobile robot. From the definition

of the desired sinusoidal-varying velocities, we have derived

analytical expressions for the evolution of the system and

proposed a new control law based on these expressions.

We have also presented a method to estimate the robot’s

state using the geometric information encapsulated in the 1D

trifocal tensor. The stability of the system under the proposed

control has been analyzed. We have shown, both theoretically

and through experiments, that our approach generates smooth

and flexible trajectories suited for a vehicle with nonholo-

nomic constraints. Considering the characteristics of these

trajectories, we believe that our technique can be adequate

for parking manoeuvres and obstacle avoidance uses.
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through the trifocal tensor for nonholonomic robots,” Robotics and

Autonomous Systems, vol. 58, no. 2, pp. 216 – 226, 2010.
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